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The nonconventional design obtained after the rotation of the parent
ellipsoid may present an XPOL degradation due to the fact that
the minimum XPOL conditions—Mizugutch and Rusch conditions
[9], [10]—are no longer satisfied. Our solution to this problem is
to alter the value of the subreflector eccentricity, while keeping all
orientation angles constant. In general, eccentricity values greater than
the one employed before the rotation will reduce system XPOL. The
synthesis algorithm implemented in DORA produces a low cross-
polarized (�35-dB or better) dual-offset Gregorian antenna which
has adequate clearance between the feed axis and the bottom of the
main reflector. In addition, the resulting configuration has the ability
to operate with either an LP or a circularly polarized (CP) feed over a
wide bandwidth without the need of being repositioned (no substantial
beam squint). The GBT radio telescope is to be illuminated by CP
feeds and, therefore, beam squint must be carefully taken into account
for proper operation. Detailed information on CP feeds and beam
squint can be found in [8].

V. CONCLUSIONS

The electrical performance of the GBT reflector antenna was
evaluated with the commercial code GRASP7 and the code PRAC.
The code DORA, developed by the authors, was employed to upgrade
the GBT single-offset configuration to a low cross-polarized dual-
offset Gregorian reflector configuration. The results from DORA are
in very good agreement with published ones [1]. The procedure
implemented in DORA, as discussed in this paper, uses the main
reflector as a fixed input parameter, a feature that makes DORA
especially recommended for the GBT case example, given that the
GBT offset main reflector once built cannot be easily changed.
New designs for the GBT suboptics assembly can be obtained with
DORA if the subreflector size, or other parameter such as the feed
configuration, is changed.

The computer simulations confirmed a low XPOL level when the
GBT dual configuration is illuminated by a purely polarized feed
antenna. A single feed antenna or array with high XPOL will likely
degrade the total system XPOL performance. Finally, a procedure
was described to reduce XPOL in dual-offset Gregorian reflector
antennas while attending practical manufacturing constraints, such
as an adequate feed region clearance. An effort was made to present
the main conclusions as generically as possible.
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Recirculating Loop for Experimental Evaluation
of EDFA Saturated Regime Effects on

Optical Communication Systems

Claudio Mazzali and Hugo L. Fragnito

Abstract—We demonstrate an optical-fiber recirculating loop for ex-
perimental simulation of long-haul optical communication systems using
cascaded erbium-doped fiber amplifiers (EDFA’s) operating in the gain
saturation regime. The loop contains sections of dispersion shifted fibers
(DSF’s), standard fiber, and a set of in-line devices, such as tuning filters,
optical amplifiers, polarization controllers, and a variable attenuator. The
main results presented here are related to the observation of the effects
due to the slow dynamics of the EDFA. We also discuss the validity of
using an optical attenuator to simulate an extra length of fiber.

Index Terms—Optical amplifiers, optical communications, recirculating
loops.

I. INTRODUCTION

Optical recirculating loops are useful tools for experimental sim-
ulations of long-distance communications(>100 km) where the
performance of system components can be evaluated at a greatly
reduced cost as compared to straight transmission experiments or
field tests. Fiber loops with erbium-doped fiber amplifiers (EDFA’s)
can be used to experimentally investigate new transmission concepts
such as dispersion management, solitons, and wavelength division
multiplexing (WDM), and study, for example, the fundamental limits
of ultra-long-distance linear and nonlinear (soliton) communications
[1]–[4]. In these studies, the EDFA’s operate in the linear gain regime
and, thus, simulate a link with EDFA’s spaced at 25–50 km. There is
considerable recent interest in links with booster amplifiers separated
by distances>100 km so as to minimize the number of amplifiers
and reduce the system cost.

In this paper, we analyze the behavior of fiber loops when
the EDFA’s operate in the saturated gain regime. Fig. 1 shows a
schematic of our experimental setup. The optical devices and their
positions within the loop are changed for different experiments, thus
we present in Fig. 1 a standard setup just for the purpose of discussing
the main features of fiber loops

The signal source is a mode-locked erbium-doped fiber laser that
generates 10-ps pulses at a repetition rate of 2.5 GHz [5]. The output
from this laser is amplified by a booster EDFA and switched on and
off by a lithium–niobate electro-optic switch that modulates the train
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Fig. 1. Experimental loop configuration.

of picosecond pulses in a packet with a duration shorter than the
loop round-trip time.

The packet is injected into the loop through a 3-dB coupler which
also acts as the output coupler. We have one or two segments of
single-mode optical fiber (standard or dispersion shifted, depending
on the experiment objective) inside the loop, and two EDFA’s
operating in gain saturation regime, a tunable (Fabry–Perot) filter
to reduce the amount of amplified spontaneous emission (ASE) in
the loop, and an optical isolator that is essential to reject the back
reflection generated by the Fabry–Perot filter. Since there is another
amplifier before the output coupler, the observed recirculating signal
is always superimposed to the ASE from this second amplifier, giving
a background level that was used to normalize the data in Fig. 2.

There are some parameters that characterize a loop transmission
experiment. The fundamental parameters are the number of loop
transitsN , the total propagated distanceLtot = NL (L is the loop
length), and the total time of flight of photons in the loopTtot = NT

(T is the loop round-trip time).
There is a limit in the number of loop cycles (and, thus, the total

distance that the experiment can simulate) given by the growth of
ASE noise from the optical amplifiers. If the total loop gain(G)
equals or exceeds the loop loss(�) at a given wavelength, then
the loop will lase at that wavelength. Thus, some mechanism must
be provided to delay the buildup of laser action before the signal
pulse has completed theN loop cycles. However, in very long-
distance experiments, the lasing buildup time can be smaller than
Ttot. A simple way to prevent laser oscillation in loops with Raman
or semiconductor amplifiers is through a dynamic control of the
amplifier pump [6], [7], but this technique cannot be used with
EDFA’s due to the slow response of the Erbium ion populations.
Buildup of noise and lasing in this case can be prevented by the
use of a bandpass spectral filter centered at the signal wavelength
or by using a synchronized electro-optic modulator that keeps the
loss high, except during the time slots where the signal pulses pass
through the modulator [8]. Another technique that can be used for
soliton experiments is the sliding guiding-filter technique, where an
electronically tunable filter has its bandpass slightly shifted in each
loop cycle, thus providing high loss for the linear noise and a relative
transparent path for the soliton, which self adjusts its spectrum [9].

Finally, another technique explored in this paper is to saturate the
gain of the EDFA’s. This technique is discussed in Section II.

II. EFFECTSDUE TO THE GAIN DYNAMICS OF EDFA

The first result that we present here is the propagation of a packet
of pulses over 33 turns in a loop formed by two EDFA’s and 45 km
of fiber (25 km of dispersion shifted fiber (DSF) for the first segment
and 20 km of standard fiber for the second segment). This experiment
simulates the propagation over 1485 km in a straight line with optical
amplifiers separated by 20 and 25 km.

The electro-optic switch in Fig. 1 modulates the continuous train
of pulses at 2.5 Gb/s with a flat-top envelope of 140-�s width,
which corresponds to keep 62% of the 45-km loop filled with optical
pulses (T for 45 km is 225�s). The envelope repetition rate is
130 Hz to allow for the observation of several loop turns before the
injection of the next packet. The signal at the loop output is shown
in Fig. 2. In this experiment, we see 33 packets (33 turns) between
two consecutive injections.

The first packet in Fig. 2 is a replica of the injected one, and each
subsequent packet corresponds to an increasing number of transits
in the fiber loop. Note that the injected packet has an optical power
smaller than that observed after the first turn; this means the total
loop gain is larger than the total loop loss. As discussed above, under
this condition the loop eventually becomes a ring laser oscillator.
However, the first packet has enough energy to significantly saturate
the gain of the two EDFA’s in the loop, thus the second (and each
of all subsequent packets) sees a gain which is smaller than the loop
loss, as is confirmed by the decreasing amplitude of the subsequent
packets. Thus, we demonstrate that it is possible to prevent laser
oscillation of the loop by saturating the gain of the EDFA’s.

The saturated regime is also confirmed by the decreasing amplitude
inside the packet, as can be observed in the inset in Fig. 2 (third
packet). If the EDFA’s were operating in the linear gain regime,
one would observe a decay of the packet amplitude over consecutive
round trips, but the quasi-exponential decay inside the packet can
only be due to the saturated amplifiers.

These results display a time evolution which is related to the
dynamics of the saturated loop gain. For the purpose of clarifying
the discussion, we have drawn in Fig. 2 two dashed lines, one
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Fig. 2. Transmission through the 45-km loop over 33 turns (1485 km).
Intensity normalized by the background ASE level.

passing through the packet amplitudes and another passing through
the baselines between adjacent packets. The baseline also displays
a nonlinear behavior. These two curves (dashed lines) reflect the
population dynamics of an EDFA and are usually disregarded because
this dynamics is so slow when compared to the bit period in
telecommunications systems. However, as this experiment shows,
the slow gain dynamics of the EDFA’s should be considered when
the transmission is in the form of packets with interleave times that
permits a nonsteady-state operation of the amplifiers.

When a modulated signal propagates in the presence of ASE noise
in a saturated amplifier, part of the signal modulation is transferred
to the noise. The baseline shown in Fig. 2 is a measure of the
nonmodulated noise and displays a minimum near the tenth turn
(500 km). After this point, the gain starts to recover. Note that
the baseline grows faster than the amplitude line, indicating that
the nonmodulated noise grows at a larger rate than the modulated
signal. Near the thirtieth turn (1300 km), it is apparent that the
noise is also modulated. A useful way of describing noisy signals
is through theQ-parameter, defined as the (optical power) signal-to-
noise ratio (SNR), where noise is the sum of noises of levels “0”
and “1.” The result is presented in Fig. 3. For the distance range
(<1200 km) where the modulated noise is negligible small, theQ-
parameter decreases monotonically with distance, as expected. Also
note that for all loop turns in this range, theQ-parameter is larger
than six (horizontal dashed line). This indicates that the bit error rate
(BER) is smaller than 10�9, which is a standard value for reliable
optical communications systems [10], [11]. The shoulder shown in
Fig. 3 (between 300–800 km) is most likely due to the recovery of
the gain.

III. RECIRCULATING FIBER LOOP WITH VARIABLE LENGTH OF FIBER

In this section, we experimentally simulate a link with periodic
booster EDFA’s operating in the gain saturation regime and with a
large separation distance between amplifiers. The loop configuration
is similar to that shown in Fig. 1, but with only one segment of 25 km
of DSF. We use a variable optical attenuator (as well as other elements
with fixed insertion loss, as described below) to simulate a variable
extra length of fiber in the range of 70 km (minimum total loop loss
� = 14 dB) to 250 km (maximum� = 50 dB). In this manner,
we simulate a system with identical amplifiers separated by the same
distanceLeq. By varyingLeq, we can investigate, for example, the

Fig. 3. Q-parameter as a function of the propagation distance (bottom axis)
and loop turns (top axis).

Fig. 4. Signal evolution after successive transits though the recirculating
loop for different settings of the variable attenuator in Fig. 1.

minimum number of amplifiers in order to reach a total transmission
distanceNLeq for a given SNR. We analyze the balance between
gain and loss to keep the SNR larger than a given acceptable value.

The linear gain of the EDFA was set at 26 dB. The total insertion
loss from the 25 km of fiber, optical isolator, 3-dB coupler, spectral
filter, splices, and fiber connectors was 15 dB, corresponding to the
loss of 75 km of fiber (assuming fibers with 0.2-dB/km loss). We used
a variable attenuator to simulate the loss that would be introduced by
an extra span of fiber whose length could be varied in the range of
20 km (�4-dB minimum insertion loss) to 200 km (�40 dB). Thus,
for example, with 35 dB in the variable attenuator, the total loop loss
is � = 50 dB, corresponding to an effective length ofLeq = 250

km of fiber. In this example, the loop would simulate a link with
booster amplifiers separated byLeq = 250 km. Fig. 4 shows the
measured output signal after successive transits trough the loop. Each
sequence of pulses in this figure was obtained for different values of
insertion loss,�a in the variable attenuator, and each 30-�s pulse
is an envelope of a train of 10-ps pulses at a rate of 2.5 GHz. The
second observable envelope pulse has propagated one cycle trough
the loop(N = 1), the third corresponds toN = 2, and so on. The
time between two adjacent envelopesT = 125 �s coincides with the
expected value for the loop period assuming 25 km of fiber (with a
refractive index of 1.5).
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For �a = 33:3 dB (total loop loss� = 43:9 dB, effective loop
lengthLeq = 241:5 km), the attenuation is so large that only the first
loop round trip can be observed. For�a = 20:2 dB (total loop loss
� = 35:2 dB, effective loop lengthLeq = 176 km), we observed
the propagation for 16 turns in the loop, which results in 400 km of
actual fiber or 2816 km of equivalent fiber. For�a< 20:2 dB, the
ASE level is too large and eventually the loop becomes a laser.

As N increases, the optical SNR degrades and a limit exists
for the number of loop cycles that keeps the SNR above a given
value. We have used the same argument of the previous section
that relates the BER to theQ-parameter to determine a propagation
distance limit where useful communication can take place with an
acceptable reliability. For example, with�a = 23:7 dB (total loop
loss � = 34:3 dB, effective loop lengthLeq = 171:5 km), the
conditionQ> 6 limits the number of loops cycles toN = 6 (total
effective span ofNLeq = 1029 km). For the case of�a = 20:2 dB,
the limit wasN = 16.

In this type of loop experiment, we claim that transmission through
25 km of fiber followed by an optical attenuator of, say, 35 dB is
equivalent to a transmission experiment throughLeq = 200 km of
fiber. Furthermore, we claim that, say, 16 turns in such a loop is
equivalent to a transmission experiment throughNLeq = 3200 km
with amplifiers separated by 200 km. These assertions need to be
qualified and commented. There are two main concerns here since
the effects of dispersion and nonlinearity accumulated in 1250 km of
fiber are not the same as those accumulated in the actual 250 km of
fiber. Let us comment on dispersion first. The dispersion parameter
D of our DSF fiber isD = 0:1 ps/nm/km at 1.55�m, and assuming
a laser linewidth of�� = 0:2 nm, the group delay dispersion is below
0.02 ps/km. At 2.5 Gb/s, we can assume a time slot for each bit of
200 ps for return to zero (RZ). Thus, a single 10-ps bit broadens its
pulse duration to 200 ps only after 4000 km in the broad spectrum
case and 15 000 km in the bandwidth limited case (our laser pulses
are bandwidth limited and have hyperbolic secant squared shape).
Clearly, the dispersion introduced by 3200 km of DFS would be not
enough to reduce the transmission performance at 2.5 Gb/s.

The second point is nonlinearity. This is governed by the effective
length where nonlinear optical effects in fibers occur:Le� = (1 �

e��L)=� = 20 km for � = 0:2 dB/km andL � �: Thus, 25 km
of DS fiber introduces approximately the same nonlinearities than
200 km of the same fiber. One can argue that once the pulses becomes
broadened by self-phase modulation (SPM) in the first 20 km of
fiber, the dispersion in the remaining 180 km of a 200-km span may
be relevant. To contest this, we can say that spectral broadening is
certainly��<��. Using� = (�n2Le�=Ae� c) dP=dt [12], where
the nonlinear refractive indexn2 = 2:3 � 10�16 cm2=W, effective
area ofAe� = 50 �m2 (as is typical of DSF), and a maximum
power derivativedP=dt = 3 mW/ps, we estimate the expected
spectral broadening from SPM inLe� = 20 km as �� = 0:2

nm. These equations can be used to analyze the validity limits of
loop experiments also for other fiber types. For our experiments,
nonlinear optical and dispersion effects are not relevant and the
propagation through the 25 DSF followed by an attenuation of 35 dB
is a good representation of the propagation through 200 km of fiber.
Of course, this argument applies to single wavelength transmission,
but not to WDM systems. For these cases, interference between
channels due to four wave mixing (FWM) must be considered [13],
and we should measure the pulses themselves and not just the packet
envelopes. Actually, in the case of nonlinearities, the DSF is even
worst since it permits a larger interaction length of different channels
and, consequently, increase the penalty by FWM.

It should be clear that our experiments were designed specifically
to analyze the effects of EDFA dynamics on packet transmission.

Our loop technique is very convenient for this purpose because of
the slow time response of erbium population which allows a clear
visualization of its effects on the packet amplitude.

IV. CONCLUSIONS

We presented a recirculating fiber loop for experimental simula-
tions of long-distance optical communication systems using saturated
gain EDFA’s.

In one experiment, we show that even when the linear gain
exceeds the loop loss, buildup of laser action can be inhibited by
gain saturation. In this experiment, we demonstrated the propagation
over more than 33 turns in a 45-km fiber loop (1400 km). The gain
dynamics of the EDFA’s considerably affect the SNR, but error-free
(Q> 6) transmission is possible for at least 1300 km (and probably
more, as we did not attempt to optimize this limit).

In a second experiment, we investigated the possibility of sim-
ulating a variable extra length of DSF through the inclusion of a
variable attenuator inside the loop. In this case, we propagated trains
of 10-ps pulses for an equivalent distance of 2800 km withQ> 6. The
conditions for the validity of this simulation depend on the dispersion
and nonlinear optical effects of the fiber being simulated and the
pulse parameters.

Recirculating fiber loops are very useful setups to experimentally
study propagation effects in optical communication systems, joining
flexibility, reliability, and a low operational cost. Fiber loops can also
be very interesting as optical memories to store megabits of data that
can be used in fast data buffer applications or even for dispersion
compensation schemes.
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A Time–Frequency Analysis Method
for Radar Scattering

Haralambos N. Kritikos and Joseph G. Teti, Jr.

Abstract—A time–frequency analysis method to study electromagnetic
scattering is presented and demonstrated using canonical objects. The
time–frequency analysis method utilizes the Bargmann transform to for-
mulate the signal representation in phase space. The use of the Bargmann
transform leads to an attractive parametric signal representation in terms
of complex polynomials, and elliptical filters can be constructed to crop
or extract selected areas of the phase plane. The signal representation
and filtering operations are demonstrated using scattering responses
from spheres and thin wires, and the prominent scattering features are
identified and extracted.

Index Terms—Scattering, time–frequency analysis.

I. BACKGROUND

Electromagnetic signals are traditionally expressed in either the
time domain or the frequency domain. However, with the de-
velopment of quantum optics, a different formulation has been
introduced to take into account the particle-like nature of quantized
electromagnetic fields (e.g., photons) [1], [4]. The mathematical
formalism is known as coherent-state analysis. The basic components
of the analysis are the coherent states which are of the form

g
(p; q)(x) =

1

�1=4
e
ipx

e
�ipq=2

e
�(x�q) =2 (1)

where, in quantum mechanical terms, these are the photons that are
characterized by a momentump and a position coordinateq. Any
signalf(x) can be represented in the phase plane asF (p; q) [4], [5]
through the projections given by the well-known transform

F (p; q) =
1

�1

f(x)g(p; q)(x)dx (2)

where the bar denotes the complex conjugate. The corresponding
inverse transform [3], [4] is given by

f(x) =
1

�1

1

�1

F (p; q)g(p; q)(x)dpdq: (3)

If one makes the identification ofx with ct (i.e., x ! ct where
c is the velocity of light), then the above transform becomes the
well-known windowed Fourier transform. In signal processing, the
windowed transform provides a localized time–frequency picture of
a signalf(t). The momentump corresponds to the angular frequency
! (i.e.,p! !), and the coordinateq corresponds to the center of the
window transform� (i.e., q ! � ). In this paper, we elect to keep the
physics-based identity of the analysis and blend it with the signal-
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processing applications to foster a broader picture of the physical
phenomena involved.

An attractive compact form of the coherent-state transform given
by (2) can be developed with the aid of the Bargmann transform.
In the Bargmann transform, the phase space coordinatesq and p

are combined together to form a complex variablez = q � ip.
Utilizing the Bargmann transform, the phase space representation
F (p; q) of a functionf(x) becomes a complex functionF (z), and
all the powerful techniques of complex variable theory are available
for the representation and analysis of the transforms.

The Bargmann transform has been introduced by a number of
investigators [1], [4]–[7], and is defined as

FBf(z) =
1

�1=4
e
�z =4

1

�1

e
zx�x =2

f(x)dx: (4)

The Bargmann transform is an isometry from the space of square
integrable functionsL2( ) to the spaceL2(C; e�jzj =2 dz) which is
known as the Fock spaceF . The Fock space is defined as

F = F : F is an entire function onC;

kFk2F =
1

�1

jF (z)j2e�jzj dz <1 (5)

wherez = q � ip, andq andp are the phase plane coordinates.
The Fock space is the space of entire analytic functions defined in

the whole complex planeC. Describing a dynamical system in terms
of its space position coordinateq and momentump is known as the
phase space representation.

The Bargmann transform can also be written in a traditional form
using the phase space variablesp and q as

Bf(z) =
1

�1=4
e
(p +q )=4

e
ipq=2

1

�1

e
�ipx�(x�q) =2

f(x)dx: (6)

The corresponding inverse Bargmann transform in this form [1], [4] is

f(x) =B
�1

e
jzj =4

F (x)

=
e�x =2

�1=4

1

�1

1

�1

e
zx
e
�z =4

F (z)[e�jzj =4
dz];

dz = dpdq: (7)

II. HERMITE-FUNCTION EXPANSIONS

The set of Hermite functions is the natural basis for the Bargmann
transform. This represents an important analytical tool for the rep-
resentation of the signals. The orthogonal Hermite functions'n(x)
are

'n(x) =
e�

�1=4
Hn(x)p
2nn!

with the Bargmann transform

�n(z) =
zn

p
2nn!

(8)

whereHn(x) is the Hermite polynomial. It is important to note that
the Bargmann transform of the Hermite function is a monomial.
Accordingly, an arbitrary functionf(x) represented in a Hermite
function basis is

f(x) = �n'n(x) �n =
1

�1

f(x)'n(x)dx (9)

with a phase space transform of the form

F (z) = �n�n(z): (10)
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